An in Situ Neutron Diffraction Mechanical Study of Superelastic Niti and Niti-tic Composites
نویسندگان
چکیده
Superelastic NiTi and NiTi-TiC composites were subjected to static uniaxial compressive loading while neutron diffraction spectra were simultaneously acquired. A methodology was established to obtain quantitative strain, texture and phase volume fraction information during the forward and reverse stress-induced martensitic transformation. Despite the presence of 10 vol. % of stiff TiC particles, a macroscopic compressive strain of 3% was obtained in the composite on loading and was fully recovered on unloading. The observed behavior suggests that the martensite accommodates the mismatch with the transforming austenite (while they co-exist) and the TiC particles (in the case of the composite). Superelastic NiTi was also subjected to simultaneous neutron diffraction and uniaxial compressive cycling. The average phase strain in the mechanicallyloaded austenite (at a given stress) remained unaltered during the load-unload cycles. However, differences in both volume fraction and texture of austenite and martensite were noted as cycling progressed, suggesting that these factors are responsible for the changes in the macroscopic stress-strain response of NiTi with mechanical cycling.
منابع مشابه
Mechanical Properties of Superelastic and Shape - Memory NiTi and NiTi - TiC Composites
The objective of this work was to study materials subjected to external loading where alternative deformation mechanisms are available to generate strains. In the case of shapememory and superelastic NiTi, these mechanisms are twinning and stress-induced phase transformation, respectively. Superelastic NiTi (51.0 at.% Ni) reinforced with 0, 10 and 20 vol.% TiC particles was fabricated by Hot Is...
متن کاملStress-induced martensitic transformations in NiTi and NiTi–TiC composites investigated by neutron diffraction
Superelastic NiTi (51.0 at.% Ni) specimens reinforced with 0, 10 and 20 vol.% TiC particles were deformed under uniaxial compression while neutron diffraction spectra were collected. The experiments yielded in-situ measurements of the thermoelastic stress-induced transformation. The evolution of austenite/martensite phase fractions and of elastic strains in the reinforcing TiC particles and the...
متن کاملNiTi and NiTi-TiC composites: Part IV. Neutron diffraction study of twinning and shape-memory recovery
متن کامل
Fatigue crack-growth in shape-memory NiTi and NiTi–TiC composites
An experimental study was conducted to examine the room-temperature fatigue crack-growth characteristics of shape-memory NiTi matrix composites reinforced with 10 and 20 vol.% of TiC particles. Microstructural characterization of these hot-isostatically-pressed materials shows that the TiC particles do not react with the NiTi matrix and that they lack any texture. Overall fatigue crack-growth c...
متن کاملAnalysis of neutron diffraction spectra acquired in situ during stress- induced transformations in superelastic NiTi
Neutron diffraction spectra were obtained during various stages of a reversible stress-induced austenite to martensite phase transformation in superelastic NiTi. This was accomplished by neutron diffraction measurements on bulk polycrystalline NiTi samples simultaneously subjected to mechanical loading. Analysis of the data was carried out using individual lattice plane ~hkl! reflections as wel...
متن کامل